Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
Acta Biotheor ; 71(2): 9, 2023 Mar 06.
Article in English | MEDLINE | ID: covidwho-2276276

ABSTRACT

This paper is concerned with the formulation and analysis of an epidemic model of COVID-19 governed by an eight-dimensional system of ordinary differential equations, by taking into account the first dose and the second dose of vaccinated individuals in the population. The developed model is analyzed and the threshold quantity known as the control reproduction number [Formula: see text] is obtained. We investigate the equilibrium stability of the system, and the COVID-free equilibrium is said to be locally asymptotically stable when the control reproduction number is less than unity, and unstable otherwise. Using the least-squares method, the model is calibrated based on the cumulative number of COVID-19 reported cases and available information about the mass vaccine administration in Malaysia between the 24th of February 2021 and February 2022. Following the model fitting and estimation of the parameter values, a global sensitivity analysis was performed by using the Partial Rank Correlation Coefficient (PRCC) to determine the most influential parameters on the threshold quantities. The result shows that the effective transmission rate [Formula: see text], the rate of first vaccine dose [Formula: see text], the second dose vaccination rate [Formula: see text] and the recovery rate due to the second dose of vaccination [Formula: see text] are the most influential of all the model parameters. We further investigate the impact of these parameters by performing a numerical simulation on the developed COVID-19 model. The result of the study shows that adhering to the preventive measures has a huge impact on reducing the spread of the disease in the population. Particularly, an increase in both the first and second dose vaccination rates reduces the number of infected individuals, thus reducing the disease burden in the population.


Subject(s)
COVID-19 , Animals , COVID-19/epidemiology , COVID-19/prevention & control , Pandemics/prevention & control , Vaccination , Computer Simulation , Models, Theoretical
2.
Communication In Biomathematical Sciences ; 3(2):90-100, 2020.
Article in English | Indonesian Research | ID: covidwho-1311934

ABSTRACT

The Richards model and its generalized version are deterministic models that are often implemented to fit and forecast the cumulative number of infective cases in an epidemic outbreak. In this paper we employ a generalized Richards model to predict the cumulative number of COVID-19 cases in Spain and Italy, based on available epidemiological data. To quantify uncertainty in the parameter estimation, we use a parametric bootstrapping approach to construct a 95% confidence interval estimation for the parameter model. Here we assume that the time series data follow a Poisson distribution. It is found that the 95% confidence interval of each parameter becomes narrow with the increasing number of data. All in all, the model predicts daily new cases of COVID-19 reasonably well during calibration periods. However, the model fails to produce good forecasts when the amount of data used for parameter estimations is not sufficient. Based on our parameter estimates, it is found that the early stages of COVID-19 epidemic, both in Spain and in Italy, followed an almost exponentially growth. The epidemic peak in Spain and Italy is respectively on 2 April 2020 and 28 March 2020. The final sizes of cumulative number of COVID-19 cases in Spain and Italy are forecasted to be at 293220 and 237010, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL